一、报告题目:Effective algorithms for separable nonconvex quadratic programming with one quadratic and box constraints
二、报告人:浙江理工大学罗和治教授
三、报告时间:2023年6月15日(星期四)下午2:00-3:00
四、报告地点: beat365中文官方网站会议室80602
五、报告摘要:We consider in this paper a separable and nonconvex quadratic program (QP) with a quadratic constraint and a box constraint that arises from application in optimal portfolio deleveraging (OPD) in finance and is known to be NP-hard. We first propose an improved Lagrangian breakpoint search algorithm based on the secant approach (called ILBSSA) for this nonconvex QP, and show that it converges to either a suboptimal solution or a global solution of the problem. We then develop a successive convex optimization (SCO) algorithm to improve the quality of suboptimal solutions derived from ILBSSA,and show that it converges to a KKT point of the problem. Second, we develop a new global algorithm (called ILBSSA-SCO-BB), which integrates the ILBSSA and SCO methods, convex relaxation and branch-and-bound framework, to find a globally optimal solution to the underlying QP within a pre-specified $\epsilon$-tolerance. We establish the convergence of the ILBSSA-SCO-BB algorithm and its complexity. Preliminary numerical results are reported to demonstrate the effectiveness of the ILBSSA-SCO-BB algorithm in finding a globally optimal solution to large-scale OPD instances.
六、主讲人简介:罗和治,博士、博士后,浙江理工大学特聘教授,中国运筹学会理事,中国运筹学会数学优化分会理事,浙江省“151人才工程”第二层次入选者。2007年获上海大学运筹学专业博士学位,2008-2010年在复旦大学管理科学与工程专业从事博士后研究,2011年和2013年在美国伊利诺伊大学香槟分校做访问学者;近年多次在美国休斯顿大学、香港中文大学和香港城市大学进行学术交流与访问。主要研究方向为约束全局优化算法及其在金融工程中的应用。已在国际运筹与优化权威期刊SIAM Journal on Optimization、Mathematical Programming Computation、INFORMS Journal on Computing、Mathematical Finance、 Computational Optimization and Applications、Journal of Global Optimization等上发表论文30 余篇。主持国家自然科学基金面上项目4 项,国家自然科学基金区域创新联合基金重点项目子课题1 项,中国博士后科学基金特别资助项目1 项,浙江省自然科学基金重点项目1项和面上项目3项。曾获中国运筹学会青年科技奖提名奖(2010)、浙江省自然科学学术奖三等奖(2012)、浙江省高等学校科研成果奖二等奖(2011)。